
 

Dijkstra's Algorithm  

  

Let’s consider a scenario where Harry 

has to travel from Oxford Circus to the 

Bus stop, Google makes his work easier 

by finding the shortest path between 

two places amidst n number of available 

path. Have you ever wondered how 

Google Maps are so efficient in 

determining the shortest path between 

two places and how maze robot plan their path?   

Well, Dijksrtra’s algorithm forms the basis. Dijkstra’s algorithm is a 

greedy algorithm used to find the single source shortest path between a 

given point to any other point. Before 

diving into the algorithm, lets 

understand few basic terminologies,  

• Edges: Edges refer to the path 

(ef, fa, ab, bg, gd…).  

• Node: Node refers to the 

intersection of two edges (a, b, 

c, d,…).  

• Cost:  Cost  refers  to  any  

quantity. It can be a distance, traffic jam factor, road risk, or a 

combination of all these. With reference to the above diagram the 

cost between f and e is 2.  

• Movement Cost: The movement cost represents a total cost sum 

from a starting point to any other node.   



 

• Closed List: Closed List contains a set of paths leading to the 

shortest path.  

• Open List: Open List contains a set of all possible path from a given 

parent node.  

Note: Both the open and closed list contain {possible node, cost, 

parent node}  

Let us consider the above diagram for reference to find the shortest 

path from node g to node f:  

Step 1:   

The open and closed list are declared as an empty array. The 

movement cost is set to null. The current node, i.e, g is assigned to 

a default value zero.  

     Step 2:   

Now, put the starting node g into open list, so the open list 

becomes, open = { { g, 0, null } }.  It simply means open is an array 

with one element in it, that one element is a node with name g, has 

a movement cost of 0, and has a parent of null. Find all immediate 

neighbors for the node.  g has three neighbors, b, h, and d. Set 

parent node for all node b, h, and d to g, and calculate movement 

cost for node b, h, and d to 0+1=1, 0+0.5=0.5, and  

0+2=2 respectively.  The open list should now contain,   

• open = { { b, 1, g }, { h, 0.5, g }, { d, 2, g } }  closed = { { 

g, 0, null } }.   



 

 
  

Step 3:  

Choose the node with the lowest movement cost from open list. 

Node h has the lowest movement cost of (0.5), compared to b 

with (1), or d with (2). Now, h is the picked node and g and d are 

its neighbors. Node g is in the closed list, so just ignore it. The 

other neighbor node d is already a member of open list, meaning 

d has a parent (node g) and a current movement cost (2). 

Because of this we can't just change the parent and movement 

cost like we did previously. What to do now is to check which 

path is shorter. The current movement cost for d is (2), this is 

due to d's parent is g, and the travel cost from g to d is (0)+2 = 2. 

The current movement cost for h however is (0.5), and to travel 

from h to d only an additional cost of 0.5 is needed, making the 

path g->h->d to cover only 1 unit of movement cost. Clearly path 

with less movement cost is to be favored. To reflect this, 

reassign d's parent to h and recalculate its movement cost to 

(0.5)+0.5 = 1. Node h can now be removed from open list and 

closed. At this point open list should be, open = { { b, 1, g}, { d, 1, 

  



 

h } }, and closed list is, closed = { { g, 0, null }, { h, 0.5, g } }. Now, 

node d in open list has changed, movement cost is now 1 and 

parent is node h.   

• open = { { b, 1, g}, { d, 1, h } }  

closed={{g,0,null},{h,0.5,g}}.  

  

   

Step 4:   

Pick a node with lowest movement cost from open list. This time 

we have a tie, both node b and d has equal movement cost of (1). 

In this case, pick b because it comes first. From step two, find all of 

b's neighbors, and we get two nodes, a and c. Both a and c are not 

members of open list so set their parent to b, and calculate their 

movement cost with (1)+1 and (1)+2 respectively. (1)+1 is due to 

(b)+a, and (1)+2 is (b)+c, movement cost wise. Put both node a and 

c to open list and close node b by removing it from open list and 

transferring to closed list. At this time open list should be,   

• open = { { d, 1, h }, { a, 2, b }, { c, 3, b } }  



  

 closed = { { g, 0, null }, { h, 0.5, g }, { b, 1, g } }.   

  

   

Step 5:    

Node with lowest movement cost in open list is d, and its neighbors are 

g, h, c, and e. Node g and h are already closed so ignore them. Node c 

however is already a member of open list. Currently node c is a child of 

b, and the movement cost of c from b is (3). However, since movement 

cost for node d is (1), it takes only 2 movement cost to get to c from d. 

Clearly moving to c from d is much better than from b. Because of this 

reassign c's parent node to d, and recalculate its movement cost to (2). 

Now we check the last neighbor e. Node e is not in open list, so just assign 

its parent to d, calculate its movement cost to (1)+1, and put it into the 

open list. Close node d. Confirm that open list is now,  

• open = { { a, 2, b }, { c, 2, d }, { e, 2, d } }  



  

closed = { { g, 0, null } , { h, 0.5, g }, { b, 1, g }, { d, 1, h }}.    

  

  

  

Step 6:  

 Pick node with lowest movement cost from open list, at this time all a, 
c, and e ties with movement cost of (2). Just pick node a because it 
comes first in the list. Find all of its neighbors to get node b, e, and f. 
Node b is closed ignore it. Node e is in the open list and currently has a 
movement cost of (2). To get to e from a, total movement cost of 4 is 
needed, twice the current movement cost of e, so just leave node e be. 
Node f is not in open list, so assign node a as its parent, calculate its 
movement cost to (2)+1, and put it into the open list. Close node a.  
Right now open list should be,  

 open = { { c, 2, d }, { e, 2, d }, { f, 3, a } }  



  

closed = { { g, 0 , null } , { h, 0.5 , g }, { b, 1, g }, { d, 1, h }, { a, 2, b }}.  

  

   

Step 7:  

 Pick node c from open list and we find that all of its neighbors, node b  

and d, are already closed. Since there is nothing else to do, close node  

c. Now open list should be, open = { { e, 2, d }, { f, 3, a } }, and closed = { { 

g, 0 , null } , { h, 0.5 , g }, { b, 1, g }, { d, 1, h }, { a, 2, b }, { c, 2, d } }. Next  

pick node e from open list and we find that it has three neighbors, node 
a, d, and f. Node a and d are closed just ignore them. Node f however is 
already a member of open list and currently has a movement cost of 
(3). Moving from e to f takes (2)+2 = 4, larger than (3) so don't do any 
modification to node f. Close node e.  

• open = { { f, 3, a } }  



  

• closed = { { g, 0, null }, { h, 0.5, g }, { b, 1, g }, { d, 1, h }, { a, 2, b }, { c, 

2, d }, { e, 2, d } }.  

  



 

   
  

Only one node remaining in our open list. So pick it and do the 
routine neighbor check. It has node a and e as neighbors however 
both node a and e are already closed. Finally we close node f by 
putting it into the closed list. Open list then becomes, open = { }, 
and closed list becomes, closed = { { g, 0, null }, { h, 0.5, g }, { b, 1, 
g  
}, { d, 1, h }, { a, 2, b }, { c, 2, d }, { e, 2, d }, { f, 3, a } }. That's it. The 
search is done, open list is now empty and target node f is in the 
closed list. In fact not just between two nodes, the algorithm 
actually found the shortest path to ALL other nodes (yes not just 
to f) from node g. The end result of Dijkstra’s search can be 
described by the figure below. Black arrow lines represent 
child/parent relationship between nodes. A child node always 
points to its parent, arrow wise. The gray lines are paths that will 
never be used.   
  



 

   
  

Looking at the figure, if any node is chosen other than g, the path 
from that node to node g can be traced by simply following the 
arrow, and one can be sure it is the shortest possible path to g.   

This is how the shortest path between two points is found and 
hence this algorithm finds its application in various domains like 
transportation planning and packet routing in communication 
networks, including the Internet. Multitudes of less obvious 
applications include finding shortest paths in social networks, 
speech recognition, document formatting, robotics, compilers, 
and airline crew scheduling. In the world of entertainment, one 
can mention path finding in video games and finding best 
solutions Top puzzles using their state-space graphs.  

 


